
Experts	in	numerical	so1ware	and	
High	Performance	Compu:ng	

Fortran	2018:	What’s	New	
	
Research	So7ware	Engineers	Workshop:	London	and	South	
East	

Numerical	Algorithms	Group	
Wadud	Miah	
wadud.miah@nag.co.uk	

POP CoE

• A	Centre	of	Excellence	
• On	Performance	OpImisaIon	and	ProducIvity	
• Promo:ng	best	pracIces	in	parallel	programming	

• Providing	Services		
•  Precise	understanding	of	parallel	applica:ons	through	parallel	code	
profiling;	
•  Sugges:on/support	on	how	to	refactor	code	in	the	most	produc:ve	
way	to	increase	parallel	efficiency	and	scalability	

• Horizontal	
•  Transversal	across	applica:on	areas,	plaLorms,	scales	

•  Free	for	academic,	research	AND	commercial	codes	and	users!	

2	

The process …

When?	
• December	2018	-	November	2021	
How?	

• Fill	in	small	ques:onnaire	
describing	applica:on	and	needs	
hVps://pop-coe.eu/request-service-form		
• Ques:ons?	Ask	pop@bsc.es		
• Install	tools	@	your	produc:on	machine	(local,	PRACE,	…)	
• Interac:vely:	Gather	data	à	Analysis	à	Report	
• Service	is	free	for	everyone!	

	
	
	

3	

4	

u  Shared	and	distributed	memory	modes;	
u  Each	process	is	called	an	image	and	communica:on	between	images	is	
single	sided	and	asynchronous;	

u An	image	accesses	remote	data	using	CoArrays;	
u  Fortran	is	the	only	compiled	language	that	provides	distributed	memory	
parallelism	as	part	of	the	standard	(Fortran	2008);	

u  Supposed	to	be	interoperable	with	MPI;	
u Coarrays	have	corank,	cobounds,	coextent	and	coshape.	Indices	used	in	
coarrays	are	known	as	cosubscripts	which	maps	to	an	image	index.	

CoArrays	-	2008	

5	

01 real, dimension(4), codimension[*] :: mat
$ aprun -n 4 ./caf_matrix.exe

u Coshape	of	coarray	is	mat(:)[1:m]	where	m	is	the	number	of	images	
which	is	specified	at	runIme.	In	this	example,	it	is	4;	

CoArray	DeclaraIon	(1)	

6	

01 real, dimension(4), codimension[2, *] :: mat
$ aprun -n 4 ./caf_matrix.exe

	

CoArray	DeclaraIon	(2)	

7	

u New	collec:ve	subrou:nes:	
co_max(A [, result_image, stat, errmsg])

co_min(A [, result_image, stat, errmsg])
co_sum(A [, result_image, stat, errmsg])

u  The	above	are	collec:ve	calls	and	A	must	be	the	same	shape	and	type;	
u  If	result_image	is	supplied,	it	is	returned	to	the	specified	image.	It	is	
undefined	on	all	other	images;	

u  stat	and	errmsg	are	returned	and	contain	the	status	of	the	call;	

Fortran	2018	CollecIves	(1)	

8	

u Broadcasts	a	from	image	source_image	to	all	other	images:	
co_broadcast(a, source_image[, stat, errmsg])

u Reduc:on	opera:on	where	operation	is	a	pure	func:on	with	exactly	
two	arguments	and	the	result	is	the	same	type	as	A:	

co_reduce(a, operation[, result_image, stat, errmsg])

u  If	an	image	has	failed,	stat=ierr	will	be	STAT_FAILED_IMAGE		
	

Fortran	2018	CollecIves	(2)	

9	

u Create	new	teams:	
form team (team_num, team_variable)

u  team_num is	an	integer	and	team_variable is	of	team_type
u  To	change	to	another	team:	
change team (new_team)

 ! statements executed with the new_team
end team

u Get	the	team	number	use	team_number([team])

CoArray	Teams	(1)	

10	

u Below	is	an	example	taken	from	the	2018	standards	document:	
change team (team_surface_type)
 select case (team_number())
 case (LAND) ! compute fluxes over land surface
 call compute_fluxes_land(flux_mom, flux_sens, flux_lat)
 case (SEA) ! compute fluxes over sea surface
 call compute_fluxes_sea(flux_mom, flux_sens, flux_lat)
 case (ICE) ! compute fluxes over ice surface
 call compute_fluxes_ice(flux_mom, flux_sens, flux_lat)
 end select
end team

CoArray	Teams	(2)	

11	

u More	intrinsic	func:ons:	
this_image(team) -	returns	the	image	index	from	team
this_image(corray[, team]) -	returns	a	rank-one	integer	array	
holding	the	sequence	of	cosubscript	values	for	coarray	
this_image(coarray, dim[, team]) -	returns	the	value	of	
cosubscript	dim	in	the	sequence	of	cosubscript	values	for	coarray	that	
would	specify	an	execu:ng	image,	i.e.	this_image(coarray)[dim]
num_images(team) -	returns	the	number	of	images	of	team
num_images(team_number) -	returns	the	number	of	images	of	
team_number

CoArray	Teams	(3)	

12	

u Returns	a	list	of	images	(integers	of	KIND	type)	that	have	failed	or	
stopped:	

failed_images([team, kind])
stopped_images([team, kind])

u  The	developer	has	to	manually	deal	with	image	failures,	e.g.	read	from	
the	previous	checkpoint	and	restart	calcula:ons;	

u  The	argument	team	is	of	team_type;	
u Returns	STAT_FAILED_IMAGE or	STAT_STOPPED_IMAGE:	
image_status(image[, team])

Fortran	2018	Fault	Tolerance	

13	

u  Supports	cri:cal	sec:ons	which	can	also	be	labelled:	
UPDATE: critical
 i[1] = i[1] + 1
end critical UPDATE

u  Supports	locking	to	protect	shared	variables:	
use iso_fortran_env
type(lock_type) :: lock_var[*]
lock(lock_var[1])
i[1] = i[1] + 1
unlock(lock_var[1])

CoArrays	Locks	and	CriIcal	(1)	

14	

u Can	check	to	see	if	lock	was	acquired:	
logical :: gotit

lock(lock_var[1], acquired_lock = gotit)

if (gotit) then
 ! I have the lock

else
 ! I do not have the lock - another image does

end if

CoArrays	Locks	and	CriIcal	(2)	

15	

u C	is	another	major	programming	language	in	computa:onal	science	and	
Fortran	2003	provides	an	interface	to	it;	

u  It	uses	the	iso_c_binding	intrinsic	Fortran	module;	
u Only	assumed	sized	arrays	are	supported	in	2008.	Assumed	shaped	
arrays	are	only	supported	in	Fortran	2018;	

	

Fortran	Interoperability	with	C	-	2003	

16	

u Op:onal	dummy	arguments	-	optional	aVribute;	
u Assumed-length	character	dummy	arguments	-	character(len=*),
intent(in) :: header	

u Assumed	shaped	arrays	-	real, intent(in) :: vec(:)	
u Allocatable	dummy	arguments	-	real, allocatable,
intent(out) :: table(:, :)	

u Pointer	dummy	arguments	-	real, pointer, intent(in) ::
vec(:)	

Fortran	2018	Interoperability	with	C	

17	

u  The	op:onal	argument	is	passed	as	a	pointer	to	C.	If	the	dummy	
argument	is	a	NULL	pointer,	then	it	is	not	present;	

subroutine print_header(debug)
 use iso_c_binding

 integer(C_INT), optional :: debug
 if (present(debug)) then

 print ‘(I0,1X,A)’, debug, ‘Error found’

 else
 print ‘(1X,A)’, ‘Error found’

 end if
end subroutine

	

OpIonal	Dummy	Arguments	(1)	

18	

u  To	call	with	the	op:onal	argument	in	the	C	code:	
int debug = 4;

print_header(&debug);

u  To	call	without	the	op:onal	argument:	
print_header ((int *)0);

	

OpIonal	Dummy	Arguments	(2)	

19	

u  Fortran	calling	C	print	func:on	using	descriptors:	
interface

 subroutine print_header(msg) bind(C)
 use iso_c_binding

 character(len=*,kind=c_char) , intent(in) :: msg
 end subroutine print_header

end interface

Assumed-Length	Character	Dummy	Arguments	(1)	

20	

#include <stdio.h>
#include “iso_fortran_binding.h”
void print_header(CFI_cdesc_t *msg) {
 int ind;

 char *p = msg->base_addr;
 for (ind = 0; ind < msg->elem_len; ind++)
 putc(p[ind], stdout);

 putc(‘\n’, stdout);
}

	

Assumed-Length	Character	Dummy	Arguments	(2)	

21	

u A	C	descriptor	CFI_cdesc_t	is	a	C	structure	with	the	following	
members:	

void *base_addr -	the	address	of	the	object.	For	unallocatable	or	
disassociated	pointers,	it	is	NULL;	
size_t elem_len -	storage	size	in	bytes;	
int version -	version	number	of	the	descriptor;	
CFI_attribute_t attribute -	whether	the	object	is	allocatable	
(CFI_attribute_allocatable),	pointer	(CFI_attribute_pointer)	or	
neither	(CFI_attribute_other).		
CFI_rank_t rank -	rank	of	the	object	and	zero	if	a	scalar;	

C	Descriptors	(1)	

22	

CFI_type_t type -	data	type	of	this	object.	Macro	can	be	
CFI_type_int,	CFI_type_float,	CFI_type_double,	
CFI_double_Complex,	and	many	other	macros;	
CFI_dim_t dim[] -	describing	the	shape,	bounds	and	memory	layout	of	
the	array	object;	
 CFI_index_t lower_bound -	the	lower	bound	of	array.	Zero	for			
				everything	else	(member	of	dim);	
 CFI_index_t extent -	size	of	the	dimension	(member	of	dim);	
 CFI_index_t sm -	memory	stride	(member	of	dim).	

C	Descriptors	(2)	

23	

void abs_array(CFI_cdesc_t *array)
 size_t i, nel = 1;

 for (i = 0; i < array->rank; i++)
 nel = nel * array->dim[i].extent;

 if (array->type == CFI_type_float) {
 float *f = array->base_addr;
 for (i = 0; i < nel; i++) f[i] = fabs(f[i]);
 } /* and for other real types */

}

C	Example	

24	

u  Two-day	workshop	covering	modern	Fortran,	tools	and	libraries	for	
computa:onal	science;	

u  Free	for	all,	including	academic,	research	and	commercial;	
u Workshops	at	ECMWF	(Reading)	between	1-2	April	and	Manchester	
University	on	4-5	April	2019:	

www.nag.co.uk/content/fortran-modernization-workshop

Fortran	ModernisaIon	Workshop	

Experts	in	numerical	algorithms	and	HPC	
services	

Let’s	Link	Up	
Ways	to	connect	with	us	

	

	

Twi8er:	www.twi8er.com/
NAGTalk	

	
Blog:	h8p://www.nag.co.uk/

blog	
	
LinkedIn:	h8p://

www.linkedin.com/e/vgh/
2707514/		

	
	

